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1 Paradigm

If you asked any random person off the street what they think math is about,
they would probably venture to guess that math is the study of numbers. And,
sure, math involves numbers, but I would argue that this is an incredible mis-
representation of the spirit of math.
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Math isn’t about numbers, or at least not just numbers. Broadly, math
cam be said to encompass the study of patterns, rules, and logic.
Whereas the sciences are bound to remain at least somewhat connected to re-
ality, mathematicians are free to dream up whatever world they want. In one
sense, mathematicians never say that anything is true. Rather, they ask what
if? questions—what if there were infinitely extending lines following a certain
set of rules (Euclidean geometry); what if there were things you could add
together or subtract or scale up or down (linear algebra); what if there were
some logic for describing things which are “close together” and “smooth” (anal-
ysis), or “containing” each other (set theory)? Does it matter if such things
exist? Perhaps that’s an interesting question, but not of primary concern to the
mathematician.

Yet mathematicians also do not belong to the humanities. Despite not being
bound to tangible things, there is still a certain objectivity to mathematics.
Mathematicians are constrained by reason and consistency. Whereas they have
the freedom to choose their starting point, they are guided by logic to immutable
conclusions which set in stone right from the start. The mathematician asks
what if?, and studies the so what?.

In this course, we will briefly outline one of the most useful what
if? questions in the history of mathematics: what if there was some
number that squared to �1.

2 Abstraction

When I was a kid, I would often think about math as describing objects that
I could see or touch or visualize, or else relate to in some visceral way. The
number 8 is not a thing that I could put into my backpack or give to a friend
for their birthday, but the notion of 8 made sense to me—I could have 8 crayons
or 8 notebooks or 8 candies. The notion of 1,584,482,293,572 also made sense
to me as a natural extension of this, although I certainly would never have the
patience to count that many things, and I certainly can’t imagine that many
of anything. Despite perfect triangles never existing in reality, I could still look
around and see things that looked like triangles; I could still draw triangles.

Back then, at least for me, math was about what things are. Numbers are
things we use to describe how many of something there are. Shapes are basically
objects which we can draw on a paper. However, this approach to math is
fundamentally limiting, both in terms of the preciseness of our language and
the breadth of wonderful objects which we can explore.

The better approach is to think about things in terms of what they do.
Numbers add and multiply together with certain rules like: it doesn’t matter
what order they add in. Shapes follow Euclid’s five axioms from which you can,
at least in principle, derive all of geometry without drawing a single line. Once
you start thinking like this, you can start making up stuff that a thing might
do, and then ask the all important question: if a thing did that stuff, what other
stuff would it have to do?
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3 Numbers

The first way in which we are introduced to numbers in school is by counting
things. There could be 1 of something, or 2 of something, or 12 of something.
And you could always add one more thing, and you should be able to describe
that also. If you have two piles of things and combined them together, you
should also be able to count the quantity of things within the composite pile.
If you had a pile of piles of things, you should be able to count the number of
things in the whole pile.

3.1 Naturals

We can take these rules and perform some abstraction; we extract rules from
some specific examples and see what makes them tick. Specifically, if you had
some number of things x, there is some action of adding another thing to the
pile: σ. And we should get out another number y:

y = σ(x) (1)

In addition, we should be able to combine piles together. We could pick
some symbol to represent the act of combining piles together, say, “+.” If x
and y are numbers, then we can also find another number z so that

z = x+ y (2)

You could also describe the act of getting together x piles of y things using
the symbol “�,” so that, for any two numbers x and y, we could also find some
number w which obeys

w = x� y (3)

Packaged together with some other rules which can be found many places,
we have effectively described the natural numbers N, containing the numbers
1, 2, 3, and so on. So far, we shouldn’t have much trouble imagining these.
After all, we spend a large fraction of our early lives learning to count things.

3.2 Zero

While our system of numbers N can do a lot of things for us, there are some
things that it can’t do. For example, is there such a number e which, for any
number x, obeys the following rule:

x+ e = x (4)

Maybe there is, and maybe there isn’t. What does it even mean for a num-
ber to exist? But this question isn’t germane. As mathematicians, we have the
prerogative to just declare such a number to exist, and to clean up the conse-
quences after. So let’s pretend that there is such a number that plays by Rule
4.
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Indeed, what if we had two such numbers, e and g, both of which followed
Rule 4 and didn’t affect the numbers that they added to. We know the number
e can be rewritten e + g since g doesn’t change the number it’s added to. But
we also know that e+ g is the same as g since e also doesn’t change the number
that it’s added to. Hence, e and g are the same number after all!

e = e+ g = g (5)

Since there’s only one such number, we can just give a name, zero: 0. Now
we have a special, privileged number, and, if we would like, we can add it to
our collection of numbers.

3.3 Integers

We defined this notion of “adding” two numbers together. However, we haven’t
yet thought about going in reverse. Now we have a special, “privileged” number
0. Let’s suppose we have some number x. Is there another number y which obeys
the following rule?

x+ y = 0 (6)

Well, no. At least, not yet, but we can make it so. So we wave our wand and
say that such a number y must exist. For a given x, how many y’s are allowed?
Suppose that there were two such numbers y and z that, when individually
added to x, both gave 0. Following the same reasoning as before, we see that

y = 0 + y = (x+ z) + y = (x+ y) + z = 0 + z = z (7)

Therefore, y = z; they are the same number. For every x, then, there is at
most one number y that, when added to x, gives 0. Let’s assume that such a
number exists for every number, and give it a special name: �x. It’s easy to
see that 0 = �0, since 0 + 0 = 0.

With these new additions, we have a whole lot of other numbers to work
with. We now have the integers Z: 0, +1, +2, and so on, but also �1, �2, and
so on.

Can we go even further? Sure! We can keep adding numbers to follow rules
that we want followed until the cows come home. But before we do, we should
appreciate that there is already incredible structure here. Even without extend-
ing our system of numbers even further, we can already understand questions
asked by one particular branch of math: number theory. Indeed, when think-
ing about the integers, such numbers like 1/2 or π or, later, 2 + 3i simply don’t
exist yet since we have never demanded that they do.

One can have a perfectly fruitful experience stopping here (or anywhere
before). Yet we will not.

3.4 Rationals

We’ve added some extra numbers in order to enforce new rules extending the
usefulness of the concept of addition. We can also try to do something like this
for multiplication.
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Specifically, if there is some number x and another number y, is there a
number z such that

y � z = x (8)

More informally, can we “undo” the concept of multiplication?
We see that, confined to the integers Z, we so far cannot. If you took x = 3

and y = 2 for example, there is no integer z such that

2� z = 3 (9)

But, again, what if we just declare that, for any x and y, there exists a
number z which follows Rule 8? It turns out that this almost works. However,
suppose x = 0. Is there such a number z which follows, say,

0� z = 3 (10)

We can’t really define this number z in a consistent way, since the preexisting
rules of our number system have 0 � z = 0 for all numbers z. If we aren’t to
contradict any rules we already have, we have to amend our assertion by saying:
Rule 8 is true for any numbers x and y where y 6= 0.

Then we obtain the rationals Q. These are just the fractional numbers that
we are used to, including numbers we already had like 1 or 3 or �37 but also
ratios of integers like 1/2 or 2/3 or �22/7.

3.5 Reals

When writing down rational numbers, we note that, if we adopt some kind
of convenient system for writing rational numbers down like decimal, we can
represent such numbers as possibly infinitely repeating decimal expansions. For
example,

1/2 = 0.5

2/3 = 0.6

�22/7 = �3.142857

(11)

where a bar indicates that a sequence of numbers repeats forever. However, note
that we could also imagine writing numbers which are sequences of possibly non-
repeating digits. At the moment, those numbers would not count as “numbers,”
but, as mathematicians, we could just declare that they exist. These are called
the real numbers R.

Why would such a concept even be useful? After all, any time we want
to divide a cake among friends, we could just use some rational number; what
purpose is there for numbers that go on and on without repetition so that, by
definition, we could never write down the whole thing?

Well, note that, defining x2 = x� x, there is some integer x, notably x = 1,
such that

x2 = 1 (12)
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In addition, note that we can also find a solution (x = 2) such that

x2 = 4 (13)

But can we find a rational number x such that

x2 = 2 (14)

Since all rational numbers are a fraction of some two integers such that the
fraction is irreducible, say p and q so that the whole rational number is x = p/q,
we can see if there is such a number that satisfies Equation 14. Notably, we
enforce that the fraction is “irreducible,” i.e., p and q cannot both be divided
any further and still satisfy x = p/q. Substituting, we obtain

x2 = p2/q2 = 2 (15)

so that
p2 = 2q2 (16)

However, 2 times any integer (such as q2) is even, so 2q2 = p2 is even. But
if an integer squares to an even number, then it’s also even, so p is even. If p
is even, it can be written as 2 times another number, say p = 2r. But then we
have

(2r)2 = 4r2 = 2q2 (17)

But then
q2 = 2r2 (18)

By similar reasoning as before, we see that q must be even. But if both p and
q are even, we should be able to divide both of them by 2 and get two integers
with still divide to make x. Thus, the fraction is not reduced after all! Since
our assumption that such a rational number x logically led to an inconsistency,
this assumption must be flawed, and no such rational x can exist. This line of
reasoning is called proof by contradiction.

Yet we can still find rational numbers which, in a sense, square to a number
that is “close” to 2. For example,

(7/5)
2

= 1.42 = 1.96 (19)

and we can get closer
(141/100)

2
= 1.412 = 1.98 (20)

and closer
(707/500)

2
= 1.4142 = 1.999396 (21)

So, in a way, even though we can’t write down every single digit of
p

2, by
following rational numbers which approach the right answer, we can still figure
out what the digits of

p
2 are. And using the real numbers means that we are

allowed to declare that there is an x such that x2 = 2.
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But not all real numbers arise from algebraic expressions like above. Some
numbers, so-called transcendental numbers, are real numbers which are not
a “root” of any expression. It may seem like such numbers would be especially
useless, but such numbers are famous throughout mathematics. Namely, num-
bers like the ratio of a circle’s circumference to its diameter π = 3.14159 . . .
and Euler’s (exponential) constant e = 2.71828 . . . are two extremely useful
transcendental numbers in mathematics.

4 Complex

Everything seems fine and dandy. We’ve basically reached the end of numbers
that need to be understood before a student can graduate from a typical high
school math curriculum. In this context, it’s no surprise that complex numbers
are a mystery to most people.

Recall that we were concerned before that x2 = 2 didn’t have an answer
until we extended our number past the rational numbers. We simply declared
such a number to exist and then saw, in hindsight, that this concept was useful.
It doesn’t really matter that you can’t actually ever get

p
2 of anything; one

still sees the utility in defining such a thing.
However, though the reals are quite expansive, there are still expressions we

can write down which don’t seem to have a real solution. For example, consider

x2 = �25 (22)

Clearly, there is no real number x which satisfies Equation 22. Any real num-
ber squared becomes a non-negative number; even squaring negative numbers
just causes the minus sign to cancel out! So we’re stuck.

But are we really? As mathematicians, we could just declare such a number
x to exist and then worry about the consequences later. Surely, what’s the harm
in doing that?

Specifically, though, we could be more systematic about this. We could
define some new number i which obeys the following rule:

i2 = �1 (23)

Many people make the mistake of saying that i is the square root of �1: i =p
�1. While this rule of thumb is sometimes useful for simplifying expressions,

it’s ultimately not the best definition. For example, the number 1 has two square
roots: 1 and �1. But, when we say that i2 = �1, we are just enforcing some
rule that i obeys. Surely there’s nothing wrong with that.

Anyway, we see that, if such a number were to exist, we would be able to
write down x = 5i so that

(5i)2 = 25i2 = �25 (24)

And we note that x = �5i also does the job of satisfying Equation 22:

(�5i)2 = 25i2(�1)2 = �25 (25)
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It’s important to note that, even though we’re using a letter i to denote this
new number, i is not a variable. It’s a whole new number, the imaginary unit,
which we write with the letter i because there isn’t a convenient representation
in solely terms of digits we already have. Yet, despite being called “imaginary,”
i is no less real than 1. They’re all just mathematical constructs, anyway.

But if we’re used to adding two numbers together to get a third number
(so-called closure), then we should also be able to add, say, 2 and i together to
get 2 + i. We could also multiply i to things to get other numbers like 2 + 3i or
7 + 4i. Indeed, if we take two real numbers x and y and combine them in the
following way,

z = x+ iy (26)

Then we have obtained the space of complex numbers C. But, despite
being called “complex,” there’s nothing particularly complex about them. I
guess they’re a composite of a real and imaginary part, so, in that sense, they’re
complex, but they’re not particularly confusing. In a way, I guess one could say
that they’re mostly complex.

Note that, in a sense, complex numbers are two-dimensional. It takes two
real numbers to specify a complex number. Whereas the real numbers can be
plotted on a line, the complex numbers take up an entire plane, the complex
plane.

4.1 Computation

Of course, given this new system of numbers, we can define very natural ways
of adding and multiplying them together. Given two complex numbers z1 =
x1 + iy1 and z2 = x2 + iy2, we can add them together by just adding their real
and imaginary components:

z1 + z2 = (x1 + x2) + i(y1 + y2) (27)

The real and imaginary parts of a complex number z = x + iy are denoted
by

Re(z) = x

Im(z) = y
(28)

We can also use the FOIL method to figure out how complex numbers are
supposed to multiply:

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + ix2y1 � y1y2

= (x1x2 � y1y2) + i(x1y2 + x2y1)

(29)

But there are some other operations of interest when it comes to complex
numbers. For example, we can define something called the complex conju-
gate, which we write as a � symbol:

z� = x� iy (30)
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Essentially, the complex conjugate just switches all i’s to �i’s which, on the
complex plane, corresponds to a reflection across the x (real) axis.

Using the complex conjugate, we can generalize the absolute value. Recall
that, for real numbers, the absolute value of a number just removes any minus
signs, if any. In other words, j2j = 2 but j � 3j = 3. In a sense, the absolute
value measures the distance to the origin.

We can define a similar thing for complex numbers, the norm jzj of a com-
plex number z, which measures the distance from a complex number to the
origin 0 + 0i on the complex plane:

jzj =
√
x2 + y2 =

p
zz� (31)

Finally, we can define the argument (alternatively “phase” or “angle”) of
a complex number is the counterclockwise angle from the real axis, specified to
lie between �π and π radians (or, alternatively, �180� to 180�):

arg(z) = arctan

(
Im(z)

Re(z)

)
= arctan

(y
x

)
(32)

All of these operations associated with a given complex number are shown
on the drawing of the complex plane in Figure 1. From the drawing, we can
make some interesting observations about a complex number z and its complex
conjugate z�:

1. z and z� have the same real part: Re(z�) = Re(z).

2. z and z� have opposite imaginary parts: Im(z�) = �Im(z).

3. z and z� have the same norm: jz�j = jzj.

4. z and z� have opposite arguments: arg(z�) = arg(z).

4.2 Repetition

Dealing with the real numbers, we can ask what happens when we multiply a
number by itself over and over again. For example, for the number 2, we get:

2
�2�! 4

�2�! 8
�2�! 16

�2�! 32
�2�! 64

�2�! 128
�2�! 256 . . . (33)

This is an operation of such importance that we call it exponentiation,
with nq meaning multiplying n by itself q times. In most cases, we can then
extend the meaning of this operation for q being any real number.

However, note that, as we exponentiate to higher and higher powers, 2q

doesn’t ever loop around. It just keeps getting bigger and bigger. Similarly, for
a number like 1/2, we have

1

2

� 1
2�! 1

4

� 1
2�! 1

8

� 1
2�! 1

16

� 1
2�! 1

32

� 1
2�! 1

64

� 1
2�! 1

128

� 1
2�! 1

256
. . . (34)
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Figure 1: A schematic drawing of the complex plane showing some complex
number z = x + iy alongside its real and imaginary parts, norm, phase, and
complex conjugate.
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Now, (1/2)q gets smaller as q gets bigger. But it doesn’t loop around.
Are there some choices for n such that, as you increase q, you loop around?

Well, yes. One of the easiest examples is the number 0:

0
�0�! 0

�0�! 0
�0�! 0

�0�! 0
�0�! 0

�0�! 0
�0�! 0 . . . (35)

Let’s forget about this one, since 0 kills everything that it multiplies. But
let’s consider 1:

1
�1�! 1

�1�! 1
�1�! 1

�1�! 1
�1�! 1

�1�! 1
�1�! 1 . . . (36)

When exponentiated, 1 repeats on a period of one number. Every time you
multiply 1 by itself, you’ll get 1 again.

But 0 and 1 aren’t the only numbers which behave this way. What about
�1?

�1
��1�! 1

��1�! �1
��1�! 1

��1�! �1
��1�! 1

��1�! �1
��1�! 1 . . . (37)

We see that �1, when “exponentiated,” repeats on a period of 2. While
multiplying a number by �1 doesn’t change the number, multiplying by �1
twice does.

And if we were restricted to the real numbers, that would be the end of
things. However, with the complex numbers, we have a number i which also
has a “repetitive” property:

i
�i�! �1

�i�! �i �i�! 1
�i�! i

�i�! �1
�i�! �i �i�! 1 . . . (38)

We see that i, when exponentiated, repeats on a period of 4. And same with
�i.

What if there were a number that repeated with a period of 3? In other
words, is there some number such that, when I multiply it by itself 1 or 2 times,
I don’t get the original number back, but I do when I multiply it by itself 3
times? Of course, we’re used to just declaring such numbers to exist, but, in
this case, we should be careful. If we adopt the complex numbers, this number

already exists. Notably, you can check that z = � 1
2 +

p
3

2 i is such a number:(
�1

2
+

p
3

2
i

)
�z�!

(
�1

2
�
p

3

2
i

)
�z�! 1

�z�!

(
�1

2
+

p
3

2
i

)
�z�!

(
�1

2
�
p

3

2
i

)
�z�! 1

�z�!

(
�1

2
+

p
3

2
i

)
�z�!

(
�1

2
�
p

3

2
i

)
. . .

(39)

But this is incredibly opaque. How did I even find this out? Surely I’m not
some hermit night owl multiplying numbers together at 2 am seeing which con-
voluted numbers multiplied to themselves give the same number again (though
this is not far from the truth).

11



4.3 Series

Let’s take a quick aside to talk about the idea of a Taylor series. I won’t explain
the details here since doing so involves a bit of discussion about calculus, but
we can motivate why we can do the amazing things outlined in this section.

First and foremost, consider a function like sinx. Suppose that x is some
really small number. Then, assuming that x is in units of radians, we can
perform the following approximation:

sinx � x (40)

However, this might not be good enough. After all, sine wiggles around a
lot, so, if our value of x is too big, we will not get the right answer, and we
might not even get close! We might want to tack on an extra term to make this
approximation work for longer.

In fact, the next term we need to add will look like this:

sinx � x� x3

3!
(41)

In fact, the exclamation mark after 3! doesn’t mean that 3 is excited (though
I would be if I got to participate in a Taylor expansion). Rather, it is shorthand
for the factorial: 3! = 3 � 2 � 1 = 6, which is where you multiply together
all the whole numbers less than or equal to the number before the exclamation
point. As another example, 5! = 5� 4� 3� 2� 1 = 120. The next term is

sinx � x� x3

3!
+
x5

5!
(42)

However, we quickly get impatient, and wonder how many terms we need to
add to get the exact answer. In fact, this requires an infinite number of terms
(Figure 2), so that

sinx = x� x3

3!
+
x5

5!
� x7

7!
+ . . . =

1∑
n=0

(�1)n
x2n+1

(2n+ 1)!
(43)

Even though we have to consider an infinite number of terms, the form that
those terms take follows a very simple pattern, namely that the sign alternates,
x is raised to the next odd power from the previous one, and the denominator
is the factorial of the same odd number.

Cosine has a very similar expansion as well, but with even terms instead of
odd (Figure 3):

cosx = 1� x2

2!
+
x4

4!
� x6

6!
+ . . . =

1∑
n=0

(�1)n
x2n

(2n)!
(44)

There’s another function that we can take the Taylor series of, and that’s
the exponential function, ex. Although it doesn’t repeat and blows up when x
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10 5 0 5 10

x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

x

x− x3

3!

x− x3

3!
+ x5

5!

x− x3

3!
+ x5

5!
− x7

7!

sinx

Figure 2: Successive Taylor series approximations for sinx. Note that, the
more terms we add, the closer the polynomial approximates sinx. To get our
approximation to be exact, we have to add an infinite number of terms.

10 5 0 5 10

x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

1

1− x2

2!

1− x2

2!
+ x4

4!

1− x2

2!
+ x4

4!
− x6

6!

cosx

Figure 3: Successive Taylor series approximations for cosx.

gets large, ex still has a nice Taylor expansion (Figure 4):

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ . . . =

1∑
n=0

xn

n!
(45)

We can see the pattern for this one as well. Actually, we notice that it’s the
same pattern as for the sine and cosine expansions, but with two differences:
(1) we are now including all whole numbers and not just the odd or even ones,
and (2) we are not alternating signs. So I guess they’re not related after all.

But are we defeated? No!
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x

0

1

2

3

4

5

y

1

1 + x

1 + x+ x2

2!

1 + x+ x2

2!
+ x3

3!

ex

Figure 4: Successive Taylor series approximations for ex.

4.4 Euler

We found the Taylor series for ex, but, now, we’re equipped with complex num-
bers. As mentioned before, complex numbers often have a strange property
that, when you multiply them by themselves over and over, they loop around
and you eventually get back to where you started. So what if I wanted to find
the Taylor series of eix, an exponential with a pesky imaginary unit snuck in.
In fact, finding this expansion is going to be as easy as taking the expansion for
ex and replacing x with ix everywhere. Then we will have

eix = 1 + (ix) +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+ . . . =

1∑
n=0

(ix)n

n!
(46)

We can then simplify this, since we know what happens when we take i to
the second or third or fourth power and so forth. We will find

eix = 1 + ix� x2

2!
� ix

3

3!
+
x4

4!
+ . . . (47)

We see that, now, the signs of the terms alternate, but only every two terms.
Also, every other term (the odd-powered ones) is now multiplied by an i. If we’re
clever, we notice that we can simply rearrange these terms to look like this:

eix =

(
1� x2

2!
+
x4

4!
+ . . .

)
+i

(
x� x3

3!
+
x5

5!
+ . . .

)
=

1∑
n=0

(�1)n
x2n

(2n)!
+i

1∑
n=0

(�1)n
x2n+1

(2n+ 1)!

(48)
But we recognize the grouped terms as the Taylor expansions for cosx and

sinx. Thus, we have determined a statement of fundamental importance in
mathematics:

eix = cosx+ i sinx (49)

We have just derived the Euler identity, which reveals to us a stunning
fact: the exponential of an imaginary number is oscillatory. If we take x = π and
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do some rearranging, we get one of the most beautiful formulae in mathematics
relating five of the most important numbers in mathematics together in one
relation:

eiπ + 1 = 0 (50)

In general, though, the full Euler identity is much more useful. Specifically,
we notice that any complex number can be written not only in standard form
but also in polar form:

z = x+ iy = reiθ (51)

where

r =
√
x2 + y2

θ = arctan(y/x)
(52)

What kind of insight does this grant us? First off, the multiplication rule
for complex numbers becomes simple, all of a sudden. Whereas standard form
makes complex number addition very easy, so does polar form for complex
number multiplication:

z1z2 =
(
r1e

iθ1
) (
r2e

iθ2
)

= r1r2e
i(θ1+θ2) (53)

We see that, if two complex numbers are represented as arrows in the
complex plane, multiplying them together entails multiplying their norms and
adding their phases.

The Euler identity also gives us a useful way to relate sines and cosines
(which are often hard to work with) to exponentials (which are often easy to
work with):

cosx =
1

2

(
eix + e�ix

)
sinx =

1

2i

(
eix � e�ix

) (54)

Indeed, the Euler identity often allows us to elide messy trigonometric iden-
tities in favor of addition. For example, suppose we had ex+y. By the Euler
identity, this is

ex+y = cos(x+ y) + i sin(x+ y) (55)

However, by the way exponentials work, we can also write

ex+y = exey

= (cosx+ i sinx) (cos y + i sin y)

= cosx cos y + i cosx sin y + i sinx cos y + i2 sinx sin y

ex+y = (cosx cos y � sinx sin y) + i (sinx cos y + cosx sin y)

(56)

But now we have two different ways of writing ex+y, and we can set them
equal:

cos(x+ y) + i sin(x+ y) = (cosx cos y � sinx sin y) + i (sinx cos y + cosx sin y)
(57)
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For this to be true, the real and imaginary parts of both sides have to
separately be equal. Thus, we have determined the double angle formulae for
trigonometric ratios without even breaking a sweat:

cos(x+ y) = cosx cos y � sinx sin y

sin(x+ y) = sinx cos y + cosx sin y
(58)

Was it obvious to you that the sine or cosine of the sum of two angles was
some mess of sines and cosines? Me neither. But now, with the power of simple
addition and the FOIL rule, you too can derive such peculiar rules without even
stressing out your middle school self.

4.5 Rotation

What I’ve said is nice and all, but how do we interpret it? What kind of picture
are we supposed to have in our head here? What even is a complex number?
In fact, what even is a real number?

Is it meant to count something? That broke down when we started con-
sidering rational numbers. Is it meant to measure things? That went out the
window when we generalized to real numbers, which have arbitrarily many (pos-
sibly non-repeating) digits that we could never possibly measure. So what are
they?

I would submit that one1 possible view is that numbers can be thought,
at least in some abstract sense, as transformations that are applied via mul-
tiplication. Specifically, positive real numbers can be thought of stretching
the number line by some amount, while negative numbers can be thought of
reflecting the number line (across the origin) and then stretching.

In this sense, complex numbers can be thought of as rotations followed
by stretching (Figure 5). We already saw that the complex numbers sort of
have the structure of sines and cosines, so it is perhaps not surprising that they
encode the structure of two-dimensional rotations. If the norm of a complex
number is 1, then the complex number corresponds to a pure rotation and can
be written via the Euler identity as eiθ for some angle θ. Rather than having
two such numbers, as with the real number line, we have an entire continuum
of such numbers corresponding to the 360�of a circle.

In this context, i becomes very easy to interpret. We see that, when we
multiply by i, a complex number z = x + iy goes to iz = �y + ix which,
plotted on the complex plane, is at the location of the original complex number
rotated counterclockwise about the origin by 90�. Obviously, two 90�rotations
in sequence will flip your image around 180�corresponding to multiplying by
�1.

Hence, thinking of complex numbers this way, we finally understand visually
why i2 = �1 isn’t so weird after all.

1of many
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Figure 5: The effect of complex numbers on the complex plane with a picture of
my dog mapped to it. The norm of the complex number determines how much
the complex plane is scaled up and down, and the phase determines the angle
by which the complex plane is rotated.

5 Evanescence

The math of complex numbers is already beautiful and needs no application
(though their applicability to rotations probably already constitutes such a
“practical” justification). However, complex numbers find extensive use in
physics to describe a myriad of phenomena. In this section, we describe one
of many such applications: the evanescent wave.

Since the nineteenth century, physicists have known that light is something
called an electromagnetic wave, which is essentially just a traveling ripple in
the everywhere-permeating electric and magnetic fields. We can write down the
electric field of a traveling wave in one dimension as

E = E0 cos(kx� ωt) (59)

for some constant E0 which is related to how bright the light is. However, like
we said before, sines and cosines are sort of a pain to work with. What we might
rather do is write E in terms of a complex exponential with the understanding
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that we will take the real part at the end. Hence, let’s actually say that

Ē = E0e
i(kx�ωt) (60)

In this expression, k and ω are called the wavevector and (angular) fre-
quency and encode how long you must travel (for k) or wait (for ω) to get from
one peak of the wave to the next. These constants k and ω are related to the
velocity of the light v by

v =
ω

k
(61)

In a vacuum, when there’s no other stuff around, light goes at the universal
speed limit c. However, in a material with some index of refraction n2 (which
we usually think of as a real number at least 1), the speed of the light actually
slows down to v = c/n. Then we can relate k and ω together so that we don’t
need to carry both around:

k =
nω

c
(62)

Then our equation for the wave looks like this:

Ē = E0e
iω(nx/c�t) (63)

or, taking the real part,

E = E0 cos(ω(nx/c� t)) (64)

However, let’s do something crazy and now replace n with n� = n+iκ (where
n and κ are real), a complex index of refraction. It’s crazy, right? What does
this even mean? Our electric field will look like

Ē = E0e
iω(n∗x/c�t) = E0e

iω((n+iκ)x/c�t) = E0e
�ωκxeiω(nx/c�t) (65)

If we now take the real part, we get

E = E0e
�ωκx cos(ω(nx/c� t)) (66)

This is almost the same answer as before with the important difference that
this wave now falls off with distance (Figure 6). So, simply by taking n� to be a
complex number, we see that the imaginary part of n� describes absorption of
the light by a material. A wave which falls off like this is called an evanescent
wave. Without doing much work, we have figured out a framework for describing
what feels like an entirely different phenomenon from the speed of the wave.

2The index of refraction is related by Snell’s law to how much light gets bent when passing
from one material to another. It’s why your straw appears bent when it’s in a glass of water.
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Figure 6: A non-evanescent and evanescent wave displayed side-by-side. The
non-evanescent wave has a purely real index of refraction and so propagates
forever whereas the evanescent wave has a complex index of refraction and so
falls off with distance (which models the absorption of light by a material).

6 Generalizations

If there’s one thing mathematicians like to do, it’s generalize. In addition to
asserting certain rules to be true, math practitioners frequency exercise an age-
old penchant for relaxing rules, making them weaker so that they apply to more
things, or tweaking rules slightly to see what happens. The complex numbers,
in mathematical terms, belong to more general classes of objects, manifolds
(curved spaces), fields (number-like systems), vector spaces (linear objects),
groups (symmetries), sets (things containing other things), and many others.

6.1 Split-Complex

What if, instead of defining the imaginary unit i, we defined a new number j
with the property that j2 = 1 where j 6= 1,�1. You may be tempted to ask:
why on earth would I want to do this? Surely there are already two real numbers
that square to 1; why do we need to randomly decide that there’s going to be a
third and (since (�j)2 = 1) fourth one?

Well, let’s explore the consequences of this new, wacky space of split-
complex numbers, numbers where, for any two real numbers x and y, can
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be written as
z = x+ yj (67)

Defining
z� = x� yj (68)

We see that, now,
zz� = x2 � y2 (69)

We see that curves of constant zz� in the split-complex plane are no longer
circles (as was the case for pedestrian complex numbers) but rather a hyper-
bola (Figure 7), with multiplication by split-complex numbers referring to the
change in so-called hyperbolic angles (though restricted to one “leg” of the
hyperbola).

3 2 1 0 1 2 3
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y

Figure 7: A unit hyperbola with one of the legs of the hyperbola emphasized.
Just as complex numbers can be thought of as rotations, split-complex numbers
can be thought of “hyperbolic rotations.”

Indeed, making an analogy with Equations 54, we can define the so-called
hyperbolic trigonometric functions (Figure 8),

coshx =
1

2

(
ex + e�x

)
sinhx =

1

2

(
ex � e�x

) (70)
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whereupon a very similar identity to the Euler identity can be proven:

ejθ = cosh θ + j sinh θ (71)
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x
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coshx

sinhx

Figure 8: Hyperbolic trigonometric ratios coshx and sinhx where x is the hy-
perbolic angle.

Well, that’s nice, I suppose, but the more practical of you might be asking
for an application. One need look no further than Einstein’s theory of spe-
cial relativity, which describes spacetime transformations between two reference
frames moving relative to each other taking into account the finite speed of
light. These so-called hyperbolic rotations exactly describe the changing of ref-
erence frames in special relativity, in which context they are called Lorentz
transformations.

6.2 Dual

Suppose now we come up with a system of numbers with a new kind of number
ε such that ε2 = 0 but ε isn’t itself zero. This number system is called the dual
numbers. Then the Euler formula becomes

eεx = 1 + εx (72)

Note that this looks just like the normal Euler formula but replacing sine
and cosine with the first terms in their Taylor expansions (which is 1 for cosine
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and x for sine). It also looks like the first two terms of the Taylor expansion of
ex where x is replaced by εx. The dual numbers thus behave as if ε is a very
small number so that eεx is very well-approximated by the first two terms of its
Taylor series (though, using this definition of dual numbers, the Euler identity
in Equation 72 is exact).

This is not particularly surprising once one notices that, if ε is thought to
be some kind of “small” number, then ε2 could be thought of as a number that
is so small that it is basically zero. This is, of course, just interpretation after
the fact; this identity follows as soon as we write down ε2 = 0.

6.3 Quaternions

Suppose we wanted to extend the complex numbers even further in order to
describe higher dimensional rotations. The complex numbers are great and
all, but they only describe rotations restricted to some two-dimensional plane.
What if we wanted to rotate out of the page?

It turns out that we can make up a number system that describes three-
dimensional rotations in the same way that the complex numbers describe two-
dimensional rotations. Now, we have to define three new imaginary units i, j,
and k following

i2 = j2 = k2 = ijk = �1 (73)

This number system is called the quaternions, H, and quaternions will
obey a slightly more complicated version of the Euler identity.

As cool as quaternions are, there is something very fundamentally differ-
ent about them. If we think about two-dimensional rotations, applying two
rotations will have the same effect regardless of which order you apply them
in. However, three-dimensional rotations don’t work that way. It’s not hard to
convince yourself that the final orientation of an object in three dimensions very
much depends on the order of the rotations that you apply. Hence, quaternions
do not commute. In fact, it can be shown that

ij = �ji
ik = �ki
jk = kj

(74)

Interestingly, when generalizing to the quaternions, we seem to have lost a lot
of the structure we typically associate with numbers, like multiplication being
commutative. While it’s sort of weird to think about multiplication depending
on the order of the things being multiplied, this property is physically motivated
by three-dimensional rotations.

6.4 Beyond

In fact, we can (and people have) generalized even further. One (of many) di-
rections that people have gone is extending the quaternions to the octonions
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O in order to describe four-dimensional rotations, and even further to the sede-
nions S in order to describe five-dimensional rotations, and so on. Each time,
the number of “unit” numbers you need will double: R has one (1), C has two
(1, i), H has four (1, i, j, k), and, correspondingly, O and S have eight and
sixteen, respectively.

But all is not quiet on the western front. It turns out that, each time you
generalize up one dimension, you lose some mathematical structure that made
your number system “nice.” For example, when going from C to H, we lost
commutativity. When going from H to O, it turns out that we also lose the
associativity of multiplication. And when going to O to S, we lose a lesser
known property called alternativity (the property that x(xy) = (xx)y and
(yx)x = y(xx) for any numbers x and y). And, when it comes to this bleak
picture of losing structure, it’s turtles all the way down.

But what do we lose at the initial step, when we go from R to C? With all
the gains we’ve discussed in this initial generalization, we should acknowledge
one critical property that real numbers have which the complex numbers don’t:
order. Since the real numbers lie on a line, there is a very natural meaning to
inequality symbols: >, <, �, �. It’s very easy to talk about which number is
bigger or smaller than another number. On a plane, we don’t have this property
anymore. And so, with this critical property in tow, the real numbers retain an
uncompromised position in mathematics.
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