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“My mathematics is simple: one plus one = one.” —Dejan Stojanovic, The Shape
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1 Practice Problems

1.1 The Long and Short of It

The answer to a physics problem can only depend on some scenario-specific parameters and con-
stants (perhaps, but not necessarily, fundamental) which reflect the “importance” of some type of
physics.

Table 1 lists a number of fundamental physics constants:

Constant Value When important?

speed of light c ∼ 3× 108ms−1 speeds are relativistic or electromagnetism
is important

gravitational constant G ∼ 7× 10−11m3 kg−1 s−2 gravity is important
Planck’s constant h 7× 10−34 kgm2 s−1 quantum mechanics is important

Table 1: Some fundamental physics concepts and when they are important.

In this Problem, we will determine which constants are most conveniently set to 1 (based on the
relevant physics), and then guess 1 in those units to estimate the “natural” length scales desired.

(a) Estimate the radius of a “classical” gravitational orbit around a mass M which has an orbital
frequency Ω.

We set G = M = Ω = 1. Then the radius a of an orbit is

a ∼ 1 ∼ 3

√
GM

Ω2
(S1)

This is exactly correct.

(b) General relativity (Einstein’s theory of gravity) extends special relativity (physics near the
speed of light), and predicts that mass sufficiently compacted to form a black hole.

Estimate the radius of a black hole (called the Schwarzschild radius) with mass M .

We set G = c = M = 1. Then the Schwarzschild radius R is

R ∼ 1 ∼ GM

c2
(S2)

In reality, in these units, R = 2. For an Earth-mass black hole, R ≈ 1 cm.

(c) In quantum mechanics, particles have wavelike properties. The wavelength of a particle is
called its de Broglie wavelength, and defines the length scale at which quantum mechanics
starts to become important for it.

Estimate the de Broglie wavelength of a particle with mass m and speed v.
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We set h = m = v = 1. Then the de Broglie wavelength is

λ ∼ 1 ∼ h

mv
(S3)

This is exactly correct.

An electron moving at 0.01c (a typical speed in a hydrogen atom), this is λc ≈ 2.4 ×
10−10m = 2.4 Å.

(d) Estimate the length scale at which a particle of mass m must be treated both quantum
mechanically and relativistically.

This is called the Compton wavelength.

We set h = c = m = 1. Then the Compton wavelength is

λ ∼ 1 ∼ h

mc
(S4)

For an electron, λ ≈ 2.4× 10−12m = 2.4 pm.

(e) Estimate the length scale at which both general relativity and quantum mechanics are im-
portant.

This is called the “Planck length.”

We set G = c = ℏ = 1. Then the Planck length is given by ℓp is

ℓp =

√
ℏG
c3

= 1.6× 10−35m (S5)

1.2 May You Live in Turbulent Times

Suppose that energy is injected into a fluid of large scale, at a rate ϵ̇ per unit mass. That energy
will “cascade” into smaller and smaller scales until it can be dissipated by viscosity. Assume that
the fluid is incompressible.

(a) In the “inertial range” (scales below the energy injection scale), how does the wavenumber
spectrum dϵ/dk depend on k?
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The wavenumber spectrum has units of [dϵ/dk] = [ϵ]/[k] = [L]3/[T ]2 (note that [ϵ] =
[L]2/[T ]2). The energy injection rate has units of [ϵ̇] = [ϵ]/[T ] = [L]2/[T ]3, and the
wavenumber has units [k] = [L]−1.

The only “independent” way to arrange these dimensionful quantities into a dimen-
sionless quantity is:

k5(dϵ/dk)3

ϵ̇2
= const. (S6)

We see that
dϵ

dk
∝ ϵ̇2/3k−5/3 (S7)

This −5/3 exponent is the famous exponent within Kolmogorov turbulence.

(b) What is the length scale at which viscosity (parameterized by the kinematic viscosity ν, with
units [ν] = [L]2/[T ]) can dissipate the turbulent energy?

The only way to combine ν, ϵ̇, and k into a dimensionless quantity is

k4ν3

ϵ̇
= const. (S8)

Then we see that the dissipative (Kolmogorov) length scale ℓ ∼ 1/k is

ℓ ∝
(
ν3

ϵ̇

)1/4

(S9)

where the prefactor is of order unity.

(c) Explain why computing the properties of magnetohydrodynamic turbulence (magnetic
turbulence in a highly conductive medium) would be so hard.

The addition of another dimensionful quantity associated with the magnetic field (e.g.,
the Alfvén velocity vA) causes dimensional analysis to stop working.

This means that at least one (perhaps very sketchy) physical argument is required
to justify why some variables should occur in certain combinations. Also, because
the magnetic field defines a special direction, this is complicated even more by there
being multiple wavenumbers of relevance (since this could differ based on whether the
direction is parallel or perpendicular to the magnetic field).

Alexander Schekochichin has a very amusing review on this topica.

ahttps://arxiv.org/abs/2010.00699
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1.3 Blast to the Gas

The shock front of an explosion at a given moment has a radius R and velocity v, and is slowed
down as it slams into the surrounding gas, which has a density ρ.

(a) Using R, v, and ρ, estimate the energy E of the explosion.

The only way to construct an energy E from R, v, and ρ is

E ∼ ρR3v2 (S10)

(b) Figure 1 shows the shock wave produced by the first-ever detonation of a nuclear weapon in
history, at a time t ≈ 15ms after the explosion.

Estimating v ∼ R/t, estimate the energy E of the explosion in kilotons. Note that the
surrounding air has a density ρ ≈ 1 kgm−3, and that a kiloton (of TNT) is a unit of energy
equal to 4.2× 1012 J.

Figure 1: Snapshot of the Trinity nuclear test explosion at t = 15ms
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Estimating R by eye from Figure 1, we approximate

v ∼ R

t
∼ 100m

15ms
∼ 6700m s−1 (S11)

Then
E ∼ 4.1× 1013 J ∼ 11 kt (S12)

The real answer has been estimated to be ≈ 25 kt. Enrico Fermi was famously able to
estimate the yield of the explosion by dropping a piece of paper while watching it from
afar and observing how far it was blown. The physicist G. I. Taylor was later able to
estimate the yield of the bomb using some publicly released images (including the one
shown in Figure 1) before the yield was declassified by the United States government.

(c) How does R scale with t?

Taking v ∼ R/t, we have
E ∼ ρR5/t2 (S13)

so that
R ∝ t2/5 (S14)

(d) Suppose that, instead of a constant amount of energy (injected into the explosion from the
beginning), there is a steady energy deposition rate Ė.

How does R evolve with time?

Now, we can take E = Ėt, so that

Ėt ∼ ρR5/t2 (S15)

This yields
R ∝ t3/5 (S16)
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