California Institute of Technology
Physics 101 Recitation
Diffuse the Situation
Nicholas Z. Rui
22 May 2023
"When you take breaks, your diffuse mode is still working away in the background." -Barbara Oakley, A Mind for Numbers: How to Excel at Math and Science

Contents

1 Practice Problem: Stumbling into the Answer 2
2 Practice Problem: Be a Conservationist 5

1 Practice Problem: Stumbling into the Answer

(a) In the Sun, photons are constantly scattered by processes such as electron scattering, which occurs with the Thomson cross section:

$$
\begin{equation*}
\sigma_{T} \approx 0.7 \mathrm{~b}=7 \times 10^{-29} \mathrm{~m}^{2} \tag{1}
\end{equation*}
$$

Roughly estimate how long it takes a photon at the center of the Sun to reach the surface. Note that the density at the center at the Sun is $\simeq 10^{2}$ times denser than the mean density of the entire Sun.

Compare this to how long it would take if there were no collisions.

The average density of the Sun is

$$
\begin{equation*}
\rho \simeq \frac{M_{\odot}}{4 \pi R_{\odot}^{3} / 3} \simeq \frac{M_{\odot}}{4 R_{\odot}^{3}} \tag{S1}
\end{equation*}
$$

Then the number density of electrons is approximately (by charge neutrality)

$$
\begin{equation*}
n \simeq \frac{f M_{\odot}}{4 m_{p} R_{\odot}^{3}} \tag{S2}
\end{equation*}
$$

where $f \simeq 10^{2}$.
Then the mean free path is

$$
\begin{equation*}
\lambda=\frac{1}{n \sigma}=\frac{4 m_{p} R_{\odot}^{3}}{f M_{\odot} \sigma_{T}} \simeq 1.7 f^{-1} \mathrm{~cm} \tag{S3}
\end{equation*}
$$

For uncorrelated steps, the mean variances of the position add:

$$
\begin{equation*}
\left\langle r^{2}\right\rangle=n \lambda^{2} \tag{S4}
\end{equation*}
$$

Setting $r=R_{\odot}$, the number of collisions that a photon would undergo before having a large chance of diffusing out of the star is

$$
\begin{equation*}
n \simeq R_{\odot}^{2} / \lambda^{2} \tag{S5}
\end{equation*}
$$

This would take a time

$$
\begin{equation*}
T \simeq n \lambda / c \simeq R_{\odot}^{2} / \lambda c \approx 3 \times 10^{6} \mathrm{yr} \tag{S6}
\end{equation*}
$$

Note that there is quite a bit of variation in the answers here depending on what is adopted for f, since this can dramatically increase the number of collisions a photon experiences and thus greatly increase the time required to escape.
In any case, this is much, much larger (by a factor R_{\odot} / λ) than the escape time of a hypothetical photon which would not need to collide with anything:

$$
\begin{equation*}
T_{0}=R_{\odot} / c \approx 2 \mathrm{~s} \tag{S7}
\end{equation*}
$$

(b) Roughly estimate how long it would take a given air molecule you breathe out to diffuse to the other side of the Earth, ignoring advection.

The number density of air molecules is

$$
\begin{equation*}
n \simeq \frac{\rho}{28 m_{p}} \approx 2 \times 10^{-25} \mathrm{~m}^{-3} \tag{S8}
\end{equation*}
$$

using $\rho \approx 1 \mathrm{~kg} \mathrm{~m}^{-3}$.
The cross section of two air molecules interacting is probably $\sigma=\pi r^{2}$ where $r \simeq 3 \AA$, yielding

$$
\begin{equation*}
\lambda=\frac{1}{n \sigma} \simeq 200 \mathrm{~nm} \tag{S9}
\end{equation*}
$$

To diffuse around the Earth (ignoring geometric effects of the Earth's curvature), one must diffuse a distance $D \simeq \pi R_{\oplus}$. Then the number of steps needed to reach this distance is

$$
\begin{equation*}
\left\langle r^{2}\right\rangle \simeq \pi^{2} R_{\oplus}^{2}=n \lambda^{2} \tag{S10}
\end{equation*}
$$

so that

$$
\begin{equation*}
n \simeq \frac{\pi^{2} R_{\oplus}^{2}}{\lambda^{2}} \simeq 10^{28} \tag{S11}
\end{equation*}
$$

The typical velocity of a given air particle is

$$
\begin{equation*}
v \simeq \sqrt{\frac{k T}{28 m_{p}}} \approx 300 \mathrm{~m} \mathrm{~s}^{-1} \tag{S12}
\end{equation*}
$$

Then the total time this would take is

$$
\begin{equation*}
T=n \lambda / v \approx 2 \mathrm{Gyr} \tag{S13}
\end{equation*}
$$

(c) Jet streams have typical speeds $v \simeq 200 \mathrm{~km} \mathrm{hr}^{-1}$. Roughly estimate how long would it take an molecule to cross from one side of the Earth to the other, if it hitched a ride on a jet stream?

We simply have

$$
\begin{equation*}
T \simeq \frac{\pi R_{\oplus}}{v} \approx 4 \mathrm{~d} \tag{S14}
\end{equation*}
$$

This is much, much smaller than the analogous diffusion time found in part (b).
(d) Consider measuring n variables x_{n}, each introducing an error σ. Estimate the error on the sum if the errors are
(i) statistical.

Statistical errors behave as random walks:

$$
\begin{equation*}
\sigma_{\mathrm{tot}}^{2}=n \sigma^{2} \tag{S15}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=\sqrt{n} \sigma \tag{S16}
\end{equation*}
$$

(ii) systematic.

Because the errors add "coherently," the total error is

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=n \sigma \tag{S17}
\end{equation*}
$$

If n is large, this answer would deviate a lot from the analogous statistical errorbased quantity.

2 Practice Problem: Be a Conservationist

Conservation laws take the form

$$
\begin{equation*}
\frac{\partial q}{\partial t}+\nabla \cdot \vec{j}=0 \tag{2}
\end{equation*}
$$

where q is the density of the conserved quantity and \vec{j} is the current, and can be any vector field. The fact that this is a conservation law can be seen by integrating over some volume v and applying Gauss's law:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{v} q \mathrm{~d} V=-\int_{\partial v} \vec{j} \cdot \mathrm{~d} \vec{A} \tag{3}
\end{equation*}
$$

(a) Let the temperature T obey the diffusion equation,

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\alpha \nabla^{2} T \tag{4}
\end{equation*}
$$

Given the density ρ and specific heat capacity C, find an expression for the heat flux.

The thermal energy density is given by

$$
\begin{equation*}
\varepsilon_{T}=\rho C T \tag{S18}
\end{equation*}
$$

Multiplying Equation 4 by ρC, we have

$$
\begin{equation*}
\frac{\partial(\rho C T)}{\partial t}=\nabla \cdot(\rho C \alpha \nabla T) \tag{S19}
\end{equation*}
$$

Rearranging and substituting, we have

$$
\begin{equation*}
\frac{\partial \varepsilon_{T}}{\partial t}+\nabla \cdot \vec{q}=0 \tag{S20}
\end{equation*}
$$

where the heat flux \vec{q} is given by

$$
\begin{equation*}
\vec{q}=-\rho C \alpha \nabla T \tag{S21}
\end{equation*}
$$

(b) The free Schrödinger equation is

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi \tag{5}
\end{equation*}
$$

Show that ψ is a conserved density, and find its current.

The Schrödinger equation is just a complex diffusion equation, and can be rewritten as

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}+\nabla \cdot\left(\frac{\hbar}{2 m i} \nabla \psi\right)=0 \tag{S22}
\end{equation*}
$$

This is a conservation law for ψ, with current

$$
\begin{equation*}
\vec{j}=\frac{\hbar}{2 m i} \nabla \psi \tag{S23}
\end{equation*}
$$

(c) Under a potential $V=V(\vec{x})$, the Schrödinger becomes

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi \tag{6}
\end{equation*}
$$

Show that $\psi^{*} \psi$ is still a conserved density, and find its current.

The trick from before doesn't work anymore. However, we may multiply the Schrödinger equation (Equation 6) by ψ^{*} :

$$
\begin{equation*}
i \hbar \psi^{*} \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \psi^{*} \nabla^{2} \psi+V \psi^{*} \psi \tag{S24}
\end{equation*}
$$

We can take the complex conjugate of this:

$$
\begin{equation*}
-i \hbar \psi \frac{\partial \psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \psi \nabla^{2} \psi^{*}+V \psi^{*} \psi \tag{S25}
\end{equation*}
$$

We can subtract these equations to eliminate V :

$$
\begin{equation*}
i \hbar\left(\psi^{*} \frac{\partial \psi}{\partial t}+\psi \frac{\partial \psi^{*}}{\partial t}\right)=i \hbar \frac{\partial\left(\psi^{*} \psi\right)}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}\right) \tag{S26}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}=\psi^{*} \nabla^{2} \psi+\nabla \psi^{*} \cdot \nabla \psi-\nabla \psi \cdot \nabla \psi^{*}-\psi \nabla^{2} \psi^{*}=\nabla \cdot\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \tag{S27}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial\left(\psi^{*} \psi\right)}{\partial t}+\nabla \cdot\left(\frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)\right)=0 \tag{S28}
\end{equation*}
$$

The probability current is then

$$
\begin{equation*}
\vec{j}=\frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \tag{S29}
\end{equation*}
$$

(d) We can modify the conservation law to

$$
\begin{equation*}
\frac{\partial q}{\partial t}+\nabla \cdot \vec{j}=F \tag{7}
\end{equation*}
$$

Write this equation in integral form. What is the effect of F ?

The integral form of Equation 7 is

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{v} q \mathrm{dV}=-\int_{\partial v} \vec{j} \cdot \mathrm{~d} \vec{A}+\int_{v} F \mathrm{~d} V \tag{S30}
\end{equation*}
$$

We see that the F term is a source term which adds material independently of it entering and exiting the boundaries of some domain.

